Conecting Finsler Geometry and Mechanics via Geodesics

Guilherme Cerqueira Gonçalves - IME-USP (FAPESP grants 2021/00551-3 and 2019/22488-1) Advisor: Prof. Marcos M. Alexandrino - IME-USP

February 2022

Guilherme Cerqueira Gonçalves - IME-USConecting Finsler Geometry and Mechani

Riemann and Finsler Manifolds

Definition 1 (Manifold)

A subset $M \subset \mathbb{R}^{m+k}$ is a **embedded manifold** if it is locally described by local graphs.

Figura: $M = \{x \in \mathbb{R}^3 | (\sqrt{x_1^2 + x_2^2} - 3)^2 + x_3^2 = 1\}$

Definition 2 (Tangent Space)

The **Tangent Space** T_pM is the vector space of **velocities** $\alpha'(0)$ of curves $\alpha : (-\epsilon, \epsilon) \to M$ with $\alpha(0) = p$. $TM = \bigcup_{p \in M} T_pM$ is the **Tangent Bundle** of M

Definition 3 (Induced Riemannian Metric)

For each $p \in M$, and $V = (v_1, v_2, v_3)$, $W = (w_1, w_2, w_3) \in T_p M$ (vectors tangent to M at $p \in M$) we can define an inner product (called **metric at p**) at $T_p M$

$$g_{\rho}(V,W) = \langle V,W \rangle = v_1w_1 + v_2w_2 + v_3w_3$$

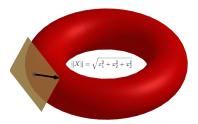


Figura:
$$||X|| = \sqrt{g_p(X,X)}$$

$R(v) = \sqrt{g(v,v)} + g(v,\vec{\beta})$ such that g is a Riemannian metric, and $\sqrt{g(\vec{\beta},\vec{\beta})} < 1.$

 $R(v) = \sqrt{g(v,v)} + g(v,\vec{\beta})$ such that g is a Riemannian metric, and $\sqrt{g(\vec{\beta},\vec{\beta})} < 1.$

Note that: (for $\lambda > 0$)

$$R(\lambda v) = \sqrt{g(\lambda v, \lambda v)} + g(\lambda v, \vec{\beta}) = \lambda(\sqrt{g(v, v)}) + \lambda(g(v, \vec{\beta})) = \lambda R(v)$$

 $R(v) = \sqrt{g(v,v)} + g(v,\vec{\beta})$ such that g is a Riemannian metric, and $\sqrt{g(\vec{\beta},\vec{\beta})} < 1.$

Note that: (for $\lambda > 0$)

$$R(\lambda v) = \sqrt{g(\lambda v, \lambda v)} + g(\lambda v, \vec{\beta}) = \lambda(\sqrt{g(v, v)}) + \lambda(g(v, \vec{\beta})) = \lambda R(v)$$
$$R(v) = \sqrt{g(v, v)} + g(v, \vec{\beta}) \neq R(-v) = \sqrt{g(v, v)} - g(v, \vec{\beta})$$

 $R(v) = \sqrt{g(v,v)} + g(v,\vec{\beta})$ such that g is a Riemannian metric, and $\sqrt{g(\vec{\beta},\vec{\beta})} < 1.$

Note that: (for $\lambda > 0$)

$$R(\lambda v) = \sqrt{g(\lambda v, \lambda v)} + g(\lambda v, \vec{\beta}) = \lambda(\sqrt{g(v, v)}) + \lambda(g(v, \vec{\beta})) = \lambda R(v)$$

$$R(v) = \sqrt{g(v,v)} + g(v,\vec{\beta}) \neq R(-v) = \sqrt{g(v,v)} - g(v,\vec{\beta})$$

Definition 5 (Finsler Norm)

A Manifold *M* is called a **Finsler Manifold** if for each tangente space exists a *Minkowski norm*:

(1)
$$F: TM \to \mathbb{R}$$
 with $F(\lambda v) = \lambda F(v)$ for $\lambda > 0$;

(2)
$$g_v(u,w) = \frac{1}{2} \frac{\partial^2}{\partial s \partial t} F^2(v + su + tw)|_{s=t=0}$$
, is a metric.

Let $\|\cdot\|$ be a Riemannian norm $\sqrt{g(\cdot, \cdot)}$ or Finsleriaan norm $F(\cdot)$. The distance between two points is defined as:

 $d(p,q) = \inf \sum_{i} \int_{t_i}^{t_i+1} \|\alpha'_i(t)\| dt$ such that $\alpha : [0,1] \to M$ is a piece-wise smooth curve such that $\alpha(0) = p$ and $\alpha(1) = q$.

Note that in the Randers case $d(p,q) \neq d(q,p)$.

(日本) (日本) (日本) 日本

Distance and Geodesics

Let $\|\cdot\|$ be a Riemannian norm $\sqrt{g(\cdot, \cdot)}$ or Finsleriaan norm $F(\cdot)$. The distance between two points is defined as:

 $d(p,q) = \inf \sum_i \int_{t_i}^{t_i+1} \|\alpha'_i(t)\| dt$ such that $\alpha : [0,1] \to M$ is a piece-wise smooth curve such that $\alpha(0) = p$ and $\alpha(1) = q$.

Note that in the Randers case $d(p,q) \neq d(q,p)$.

Definition 6 (Geodesic)

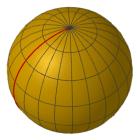
A smooth curve parameterized by arc-length $\gamma: I \to M$ is called a **geodesic** if it *minimizes locally the distance*, i.e., for each $s_0 \in I$ exists $\epsilon > 0$ such that $d(\gamma(s_0), \gamma(s)) = \int_{s_0}^{s} \|\gamma'(t)\| dt = s - s_0$ for $s \in [s_0, s_0 + \epsilon]$.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Distance and Geodesics

Definition 6 (Geodesic)

A smooth curve parameterized by arc-length $\gamma : I \to M$ is called a **geodesic** if it *minimizes locally the distance*, i.e., for each $s_0 \in I$ exists $\epsilon > 0$ such that $d(\gamma(s_0), \gamma(s)) = \int_{s_0}^s \|\gamma'(t)\| dt = s - s_0$ for $s \in [s_0, s_0 + \epsilon]$.



Newton Equation

Proposition 7 (Jacobi Metric)

Let γ be a solution to the Newton Equation $(\gamma''(t))^T = -(\nabla U)^T$ at a Riemannian Manifold with Riemannian induced metric (M, g_0) such that the potential function U is bounded above (U < c). Then γ is a geodesic of the Jacobi metric $(c - U)g_0$ up to reparametrization.

Randers Geodesics

Alternatively, the Randers norm can be defined as:

$$\mathsf{R}(v) = h(v - \mathsf{R}(v)\mathsf{W})$$

where *h* is a **Riemannian norm** and *W* is a vector field such that h(W, W) < 1 (called **Wind**).

The pair (h, W) is called **Zermelo data**, on $T_p M$: $B_{\epsilon}^R(0) = B_{\epsilon}^h(0) + \epsilon W_p$

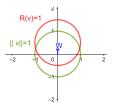
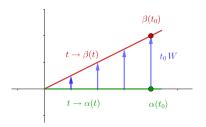


Figura: Vide S. Markvorsen, A Finsler geodesic spray paradigm for wildfire spread modelling, Nonlinear Anal., Real World Appl. 28 (2016) 208–228. Service State St

Theorem 8 (1)

Consider a Randers norm R with Zermelo data (h, W) in M, such that W is a Killing Vector Field (i.e., a vector field whose flow is and isometry). Let $\alpha : I \subset \mathbb{R} \to M$ be a arc-length parametrized geodesic in the Riemannian manifold (M, h).

Then $\beta(t) = \varphi_t(\alpha(t))$ is a Randers arch-length parametrized geodesic, such that φ_t is the flow of W.



[1]: P. Foulon and V. S. Matvee, Zermelo Deformation of Finsler metrics, Electronic Research Announcements, V. 25 (2018), 1–7

Katok's Example on S^2

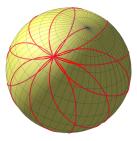


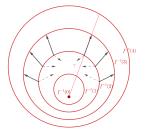
Figura: Randers Geodesic on the sphere, obtained from the Zermelo data (h, W) where *h* is the Euclidean metric on the sphere S^2 and *W* is a rotation with irrational angular velocity of $\frac{1}{\sqrt{5}}$

Guilherme Cerqueira Gonçalves - IME-USConecting Finsler Geometry and Mechani

Distance Function and Forward Parallelism

Given $f: M \to \mathbb{R}$ a partition $\mathcal{F} = \{f^{-1}(c)\}$ is called **forward parallel** if for $c_0 < c_1$

$$x\in f^{-1}(c_1)\cap C^+_\epsilon(f^{-1}(c_0))\Longrightarrow f^{-1}(c_1)\subset C^+_\epsilon(f^{-1}(c_0))$$



Guilherme

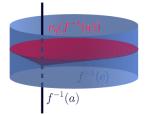


Figura:
$$f(x) = d(0, x)$$

Figura: $f(x) = d(0, x)$
Converse IMELISConnecting Einster Geometry and Mechani
February 2022 10 (19)

Theorem 9 (3)

Wavefronts are pre-images of distance functions relatively to an source A. In other words, for f(x) = d(A, x) the wavefronts are $f^{-1}(c)$.

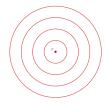


Figura: Huygens: each point of a wavefront functions as a new punctual source.

Figura: Markvorsen: Model for wildfire (with mild wind)

February 2022

11/19

[3] H.R. Dehkordi and S. Alberto, *Huygens? envelope principle in Finsler spaces and analogue gravity.* Classical and Quantum Gravity 36.8 (2019): 085008.

Transnormal Function: generalizing the distance function

Definition 10

Given a Finsler manifold (M, F), a smooth function $f : M \to \mathbb{R}$ is called *F*-transnormal function if:

$$F(\nabla f)^2 = b(f)$$

where b is continuous.

•
$$f(x, y) = \sqrt{x^2 + y^2} \rightarrow \|\nabla f(x, y)\|^2 = 1$$
, then $b \equiv 1$.
• $f(x, y) = x^2 + y^2 \rightarrow \|\nabla f(x, y)\|^2 = 4(x^2 + y^2)$, then $b(z) = 4z$.

Transnormal Function: generalizing the distance function

Definition 10

Given a Finsler manifold (M, F), a smooth function $f : M \to \mathbb{R}$ is called *F*-transnormal function if:

$$F(\nabla f)^2 = b(f)$$

where b is continuous.

•
$$f(x, y) = \sqrt{x^2 + y^2} \rightarrow \|\nabla f(x, y)\|^2 = 1$$
, then $b \equiv 1$.
• $f(x, y) = x^2 + y^2 \rightarrow \|\nabla f(x, y)\|^2 = 4(x^2 + y^2)$, then $b(z) = 4z$.

Remark 11

•
$$df(\cdot) = g_{\nabla f}(\nabla f, \cdot)$$

Question: Under wich conditions the level sets are forward and backward parallel, in other words, $\mathcal{F} = \{f^{-1}(c)\}$ is a Finsler Partition?

Question: Under wich conditions the level sets are forward and backward parallel, in other words, $\mathcal{F} = \{f^{-1}(c)\}$ is a Finsler Partition?

Theorem 12

Let (M, F) be a analytic, compact, connected Finsler Manifold and $f: M \to \mathbb{R}$ an F-transnormal analytic function with f(M) = [a, b]. Suppose that the level sets are connected sets and a, b are the only singular values on [a, b]. Then:

(a) The sets $f^{-1}(a)$ and $f^{-1}(b)$ are submanifolds.

(b) The level sets are equidistant, in other words, $\mathcal{F} = \{f^{-1}(c)\}$ is a Finsler Foliation.

[2] M. M. Alexandrino, B. O. Alves, H. R. Dehkordi, *On Finsler transnormal functions*, Differential Geometry and its Applications Volume 65, 93-107 (2019)

< 回 > < 回 > < 回 >

February 2022

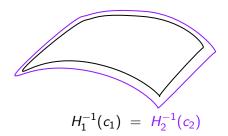
13/19

Newton Equation

Proposition 13 (Jacobi Metric)

Let γ be a solution to the Newton Equation $(\gamma''(t))^T = -(\nabla U)^T$ at a Riemannian Manifold with Riemannian induced metric (M, g_0) such that the potential function U is bounded above (U < c). Then γ is a geodesic of the Jacobi metric $(c - U)g_0$ up to reparametrization.

Sketch of the Hamiltonian proof of the Jacobi Metric Theorem



• Then, the symplectic gradients are multiples of one another, it means: $X_{H_2}(z) = \lambda(z)X_{H_1}(z)$

- There exists φ , such that if α_1, α_2 are solutions to the flows of X_{H_1}, X_{H_2} respectively, $\alpha_2 = \alpha_1 \circ \varphi$.
- Apply the result to the following Hamiltonians:

$$H(v_p) = \frac{1}{2} ||v_p||^2 + U(p)$$

$$H_J(v_p) = \frac{\|v_p\|^2}{2(c - U(p))}$$

Guilherme Cerqueira Gonçalves - IME-USConecting Finsler Geometry and Mechani

15/19

Sketch of the Lagrangian proof of the Jacobi Metric Theorem

- Note that solutions of the Newton Equantion have constant energy.
- Compare the *Levi-Civita Connections* of the metrics g and g_J using *Koszul's Formula*.
- Remember that by the chain rule, if h is a reparametrization and $\beta = \alpha \circ h$, then $\frac{\nabla}{dt}\beta'(t) = h''(t)\alpha'(h(t)) + (h'(t))^2 \frac{\nabla}{dt}\alpha'(h(t))$.
- Conclude the existence of a reparametrization *h* that turn solutions of Euler-Lagrange Equation of one Lagrangian to solutions of the other one.

From properties of the flow φ and the chain rule we calculate that the derivative of β is: β'(t) = W(φ_t(α(t))) + φ_{t*}α'(t).

- From properties of the flow φ and the chain rule we calculate that the derivative of β is: β'(t) = W(φ_t(α(t))) + φ_{t*}α'(t).
- As φ preserves h and W, it can be proven that it preserves R. Then:

 $R(W(\varphi_t(\alpha(t))) + \varphi_{t*}\alpha'(t)) = R(W(\alpha(t)) + \alpha'(t)) = h(\alpha'(t))$

- From properties of the flow φ and the chain rule we calculate that the derivative of β is: β'(t) = W(φ_t(α(t))) + φ_{t*}α'(t).
- As φ preserves h and W, it can be proven that it preserves R. Then:

 $R(W(\varphi_t(\alpha(t))) + \varphi_{t*}\alpha'(t)) = R(W(\alpha(t)) + \alpha'(t)) = h(\alpha'(t))$

• Then, β is arch-length parametrized relatively to R and the following equality is true:

$$\int h(\alpha'(t))dt = \int R(\beta'(t))dt$$

- From properties of the flow φ and the chain rule we calculate that the derivative of β is: β'(t) = W(φ_t(α(t))) + φ_{t*}α'(t).
- As φ preserves h and W, it can be proven that it preserves R. Then:

 $R(W(\varphi_t(\alpha(t))) + \varphi_{t*}\alpha'(t)) = R(W(\alpha(t)) + \alpha'(t)) = h(\alpha'(t))$

• Then, β is arch-length parametrized relatively to R and the following equality is true:

$$\int h(\alpha'(t))dt = \int R(\beta'(t))dt$$

• As α is a geodesic, it minimizes locally the distance, then:

 $d_R(0,\varphi_{\epsilon}(p)) \leqslant d_h(0,p)$

- From properties of the flow φ and the chain rule we calculate that the derivative of β is: β'(t) = W(φ_t(α(t))) + φ_{t*}α'(t).
- As φ preserves h and W, it can be proven that it preserves R. Then: $\frac{R(W(\varphi_t(\alpha(t))) + \varphi_{t*}\alpha'(t)) = R(W(\alpha(t)) + \alpha'(t)) = h(\alpha'(t))$
- Then, β is arch-length parametrized relatively to R and the following equality is true:

$$\int h(\alpha'(t))dt = \int R(\beta'(t))dt$$

• As α is a geodesic, it minimizes locally the distance, then:

$d_R(0,\varphi_\epsilon(p))\leqslant d_h(0,p)$

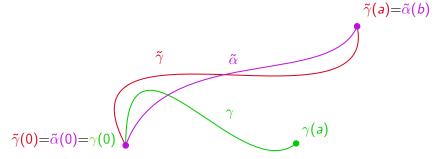
February 2022

17/19

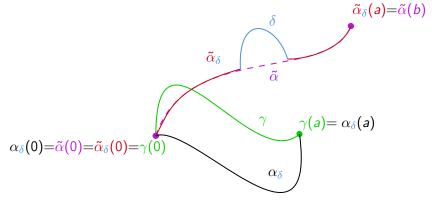
• A similar argument is constructed, consider h a norm with data (R, -W) and it is obtained that β minimizes locally the Randers distance, hence it is a geodesic.

Guilherme Cerqueira Gonçalves - IME-USConecting Finsler Geometry and Mechani

• A similar argument is constructed, consider h a norm with data (R, -W) and it is obtained that β minimizes locally the Randers distance, hence it is a geodesic.



• A similar argument is constructed, consider h a norm with data (R, -W) and it is obtained that β minimizes locally the Randers distance, hence it is a geodesic.



Sketch of the proof of the Theorem on Foliations

- Use that pre-image of real analytic functions are a stratification.
- Using compactness, analyticity and the codimension 1 it can be proven that exists a neighborhood without the singular leaves that the partition is Finsler. To prove this one analyses the integral curves of ∇f.
- Using the compactness and analyticity again it can be proven that the derivative of the endpoint map η_{tξ} has constant rank in each leaf. Using the Rank Theorem and tubular neighborhood arguments one proves that the singular leafs are submanifolds.
- Using analyticity and compactness to analyze the integral curves of ∇f and the tubular neighborhood argument one extends the properties to the whole manifold, finishing the proof.

Main Bibliography

- Foulon, Patrick; Matveev, Vladimir. S.; Zermelo Deformation of Finsler Metrics by Killing Vector Fields, Electronic Research Announcements, 25 (2018), 1-7.
- Alexandrino, M. M.; Alves, B. O.; Dehkordi, H. R. On Finsler transnormal functions Differential Geometry and its Applications v 65 (2019) 93–107.
- Alves, Benigno O. Sobre Folheações Finslerianas Singulares Tese de Doutorado IME-USP 2017 (orientador Prof. M. Alexandrino) https://teses.usp.br/teses/disponiveis/45/45131/tde-14122017-130959/pt-br.php
- Gonçalves, Guilherme Casas; *Rudimento de Mecânica, Ações Hamiltoneanas e Aplicação Momento* Dissertação de Mestrado IME-USP 2015