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Riemann and Finsler Manifolds

Definition 1 (Manifold)

A subset M ⊂ Rm+k is a embedded manifold if it is locally described by
local graphs.

Figura: M = {x ∈ R3| (
√

x2
1 + x2

2 − 3)2 + x2
3 = 1}

Guilherme Cerqueira Gonçalves - IME-USP (FAPESP grants 2021/00551-3 and 2019/22488-1) Advisor: Prof. Marcos M. Alexandrino - IME-USPConecting Finsler Geometry and Mechanics via GeodesicsFebruary 2022 1 / 19



Definition 2 (Tangent Space)

The Tangent Space TpM is the vector space of velocities α′(0) of curves
α : (−ϵ, ϵ) → M with α(0) = p. TM = ∪p∈MTpM is the Tangent
Bundle of M
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Definition 3 (Induced Riemannian Metric)

For each p ∈ M, and V = (v1, v2, v3),W = (w1,w2,w3) ∈ TpM (vectors
tangent to M at p ∈ M) we can define an inner product (called metric at
p) at TpM

gp(V ,W ) = ⟨V ,W ⟩ = v1w1 + v2w2 + v3w3

Figura: ∥X∥ =
√
gp(X ,X )
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Definition 4 (Randers Norm)

R(v) =
√
g(v , v) + g(v , β⃗) such that g is a Riemannian metric, and√

g(β⃗, β⃗) < 1.

Note that: (for λ > 0)

R(λv) =
√

g(λv , λv) + g(λv , β⃗) = λ(
√
g(v , v)) + λ(g(v , β⃗)) = λR(v)

R(v) =
√
g(v , v) + g(v , β⃗) ̸= R(−v) =

√
g(v , v)− g(v , β⃗)

Definition 5 (Finsler Norm)

A Manifold M is called a Finsler Manifold if for each tangente space exists a
Minkowski norm:

(1) F : TM → R with F (λv) = λF (v) for λ > 0;

(2) gv (u,w) = 1
2

∂2

∂s∂tF
2(v + su + tw)|s=t=0, is a metric.
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Distance and Geodesics

Let ∥ · ∥ be a Riemannian norm
√

g(·, ·) or Finsleriaan norm F (·). The
distance between two points is defined as:

d(p, q) = inf
∑

i

∫ ti+1
ti

∥α′
i (t)∥dt such that α : [0, 1] → M is a piece-wise

smooth curve such that α(0) = p and α(1) = q.

Note that in the Randers case d(p, q) ̸= d(q, p).
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∫ ti+1
ti
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i (t)∥dt such that α : [0, 1] → M is a piece-wise

smooth curve such that α(0) = p and α(1) = q.

Note that in the Randers case d(p, q) ̸= d(q, p).

Definition 6 (Geodesic)

A smooth curve parameterized by arc-length γ : I → M is called a
geodesic if it minimizes locally the distance, i.e, for each s0 ∈ I exists
ϵ > 0 such that d(γ(s0), γ(s)) =

∫ s
s0
∥γ′(t)∥dt = s − s0 for s ∈ [s0, s0 + ϵ].
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Newton Equation

Proposition 7 (Jacobi Metric)

Let γ be a solution to the Newton Equation (γ′′(t))T = −(∇U)T at
a Riemannian Manifold with Riemannian induced metric (M , g0) such
that the potential function U is bounded above (U < c). Then γ is a
geodesic of the Jacobi metric (c − U)g0 up to reparametrization.
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Randers Geodesics

Alternatively, the Randers norm can be defined as:

R(v) = h(v − R(v)W )

where h is a Riemannian norm and W is a vector field such that
h(W ,W ) < 1(called Wind).

The pair (h,W ) is called Zermelo data, on TpM:

BR
ϵ (0) = Bh

ϵ (0) + ϵWp

Figura: Vide S. Markvorsen, A Finsler geodesic spray paradigm for wildfire spread
modelling, Nonlinear Anal., Real World Appl. 28 (2016) 208–228.
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Theorem 8 (1)

Consider a Randers norm R with Zermelo data (h,W ) in M, such that W
is a Killing Vector Field (i.e., a vector field whose flow is and isometry).
Let α : I ⊂ R → M be a arc-length parametrized geodesic in the
Riemannian manifold (M, h).
Then β(t) = φt(α(t)) is a Randers arch-length parametrized geodesic,
such that φt is the flow of W .

[1]: P. Foulon and V. S. Matvee, Zermelo Deformation of Finsler metrics,
Electronic Research Announcements, V. 25 (2018), 1–7
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Katok’s Example on S2

Figura: Randers Geodesic on the sphere, obtained from the Zermelo data (h,W )
where h is the Euclidean metric on the sphere S2 and W is a rotation with
irrational angular velocity of 1√

5
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Distance Function and Forward Parallelism

Given f : M → R a partition F = {f −1(c)} is called forward parallel if
for c0 < c1

x ∈ f −1(c1) ∩ C+
ϵ (f −1(c0)) =⇒ f −1(c1) ⊂ C+

ϵ (f −1(c0))

Figura: f (x) = d(0, x) Figura: f (x) = d(0, x)
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Theorem 9 (3)

Wavefronts are pre-images of distance functions relatively to an source A.
In other words, for f (x) = d(A, x) the wavefronts are f −1(c).

Figura: Huygens: each point of a
wavefront functions as a new punctual
source.

Figura: Markvorsen: Model for wildfire
(with mild wind)

[3] H.R. Dehkordi and S. Alberto, Huygens? envelope principle in Finsler spaces and
analogue gravity. Classical and Quantum Gravity 36.8 (2019): 085008.
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Transnormal Function: generalizing the distance function

Definition 10
Given a Finsler manifold (M,F ), a smooth function f : M → R is called
F -transnormal function if:

F (∇f )2 = b(f )

where b is continuous.

f (x , y) =
√
x2 + y2 → ||∇f (x , y)||2 = 1 , then b ≡ 1.

f (x , y) = x2 + y2 → ||∇f (x , y)||2 = 4(x2 + y2), then b(z) = 4z .

Remark 11
df (·) = g∇f (∇f , ·)
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Question: Under wich conditions the level sets are forward and backward
parallel, in other words, F = {f −1(c)} is a Finsler Partition?

Theorem 12
Let (M,F ) be a analytic, compact, connected Finsler Manifold and
f : M → R an F -transnormal analytic function with f (M) = [a, b].
Suppose that the level sets are connected sets and a, b are the only singular
values on [a, b]. Then:
(a) The sets f −1(a) and f −1(b) are submanifolds.
(b) The level sets are equidistant, in other words, F = {f −1(c)} is a

Finsler Foliation.

[2] M. M. Alexandrino, B. O. Alves, H. R. Dehkordi, On Finsler
transnormal functions, Differential Geometry and its Applications Volume
65, 93-107 (2019)
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Newton Equation

Proposition 13 (Jacobi Metric)

Let γ be a solution to the Newton Equation (γ′′(t))T = −(∇U)T at
a Riemannian Manifold with Riemannian induced metric (M , g0) such
that the potential function U is bounded above (U < c). Then γ is a
geodesic of the Jacobi metric (c − U)g0 up to reparametrization.
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Sketch of the Hamiltonian proof of the Jacobi Metric
Theorem

H−1
1 (c1) = H−1

2 (c2)

Then, the symplectic gradients
are multiples of one another, it
means: XH2(z) = λ(z)XH1(z)

There exists φ, such that if
α1, α2 are solutions to the flows
of XH1 ,XH2 respectively,
α2 = α1 ◦ φ.

Apply the result to the following
Hamiltonians:

H(vp) =
1
2
||vp||2 + U(p)

HJ(vp) =
||vp||2

2(c − U(p))
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Sketch of the Lagrangian proof of the Jacobi Metric
Theorem

Note that solutions of the Newton Equantion have constant energy.

Compare the Levi-Civita Connections of the metrics g and gJ using
Koszul’s Formula.

Remember that by the chain rule, if h is a reparametrization and
β = α ◦ h, then ∇

dtβ
′(t) = h′′(t)α′(h(t)) + (h′(t))2 ∇

dtα
′(h(t)).

Conclude the existence of a reparametrization h that turn solutions of
Euler-Lagrange Equation of one Lagrangian to solutions of the other
one.
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Sketch of the proof of the Theorem on Randers Geodesics

From properties of the flow φ and the chain rule we calculate that the
derivative of β is: β′(t) = W (φt(α(t))) + φt∗α

′(t).
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From properties of the flow φ and the chain rule we calculate that the
derivative of β is: β′(t) = W (φt(α(t))) + φt∗α

′(t).
As φ preserves h and W , it can be proven that it preserves R . Then:

R(W (φt(α(t))) + φt∗α
′(t)) = R(W (α(t)) + α′(t)) = h(α′(t))
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′(t).
As φ preserves h and W , it can be proven that it preserves R . Then:

R(W (φt(α(t))) + φt∗α
′(t)) = R(W (α(t)) + α′(t)) = h(α′(t))

Then, β is arch-length parametrized relatively to R and the following
equality is true: ∫

h(α′(t))dt =

∫
R(β′(t))dt
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R(W (φt(α(t))) + φt∗α
′(t)) = R(W (α(t)) + α′(t)) = h(α′(t))

Then, β is arch-length parametrized relatively to R and the following
equality is true: ∫

h(α′(t))dt =

∫
R(β′(t))dt

As α is a geodesic, it minimizes locally the distance, then:

dR(0, φϵ(p)) ⩽ dh(0, p)
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Then, β is arch-length parametrized relatively to R and the following
equality is true: ∫

h(α′(t))dt =

∫
R(β′(t))dt

As α is a geodesic, it minimizes locally the distance, then:

dR(0, φϵ(p)) ⩽ dh(0, p)

A similar argument is constructed, consider h a norm with data
(R,−W ) and it is obtained that β minimizes locally the Randers
distance, hence it is a geodesic.
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Sketch of the proof of the Theorem on Randers Geodesics

A similar argument is constructed, consider h a norm with data
(R,−W ) and it is obtained that β minimizes locally the Randers
distance, hence it is a geodesic.

γ

γ̃(0)=α̃(0)=γ(0)
γ(a)

γ̃(a)=α̃(b)

γ̃ α̃
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Sketch of the proof of the Theorem on Randers Geodesics

A similar argument is constructed, consider h a norm with data
(R,−W ) and it is obtained that β minimizes locally the Randers
distance, hence it is a geodesic.

γ

αδ(0)=α̃(0)=α̃δ(0)=γ(0)

γ(a)= αδ(a)

αδ

δ
α̃δ(a)=α̃(b)

α̃

α̃δ
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Sketch of the proof of the Theorem on Foliations

Use that pre-image of real analytic functions are a stratification.

Using compactness, analyticity and the codimension 1 it can be proven
that exists a neighborhood without the singular leaves that the
partition is Finsler. To prove this one analyses the integral curves of
∇f .

Using the compactness and analyticity again it can be proven that the
derivative of the endpoint map ηtξ has constant rank in each leaf.
Using the Rank Theorem and tubular neighborhood arguments one
proves that the singular leafs are submanifolds.

Using analyticity and compactness to analyze the integral curves of
∇f and the tubular neighborhood argument one extends the
properties to the whole manifold, finishing the proof.
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