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MODULUS OF CONTINUITY OF SOLUTIONS TO COMPLEX

MONGE-AMPÈRE EQUATIONS ON STEIN SPACES

GUILHERME CERQUEIRA GONÇALVES

Abstract. In this paper, we study the modulus of continuity of solutions to Dirichlet
problems for complex Monge-Ampère equations with Lp densities on Stein spaces with
isolated singularities. In particular, we prove such solutions are Hölder continuous outside
singular points if the boundary data is Hölder continuous.
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Introduction

Let X be a Stein complex space that is reduced, locally irreducible, and of complex
dimension n > 1 with an isolated singularity, where Xsing = {0} ⊂ CN . Equip X with
a Hermitian metric whose fundamental form is β, a positive (1, 1)-form, and let dβ(·, ·) be
the distance induced by β. Let Ω be a bounded, strongly pseudoconvex open subset of X ,
and fix ρ as a smooth, strictly plurisubharmonic defining function, i.e., Ω = {ρ < 0}. Given
φ ∈ C0(∂Ω) and f ∈ Lp(Ω, βn) with p > 1, we consider the Dirichlet problem:

MA(Ω, φ, f) :

{
(ddcu)n = fβn in Ω,
u = φ on ∂Ω,

where d = ∂ + ∂ and dc = i(∂ − ∂). This Dirichlet problem for the complex Monge-Ampère
operator has been intensively studied in domains of Cn (see [GZ17] for a historical account).

The study of complex Monge-Ampère equations is key to understanding canonical metrics
in Kähler manifolds. This significance extends to mildly singular varieties as well. Interactions
with birational geometry, such as the Minimal Model Program, make it enticing across fields
to comprehend these equations.

In this paper, our objective is to explore the impact of boundary data and singularity
types on the modulus of continuity of solutions. In particular, we prove that if φ is Hölder
continuous, then so is the solution of MA(Ω, φ, f) outside the singular point.

Regarding applications of the Hölder regularity of solutions to complex Monge-Ampère
equations, we refer to [GGZ23c] for some geometric consequences of the Hölder continuity
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2 GUILHERME CERQUEIRA GONÇALVES

of Kähler-Einstein potentials and to [DNS10] for more details about applications in complex
dynamics.
Several works have focused on the Hölder continuity of solutions, both on domains of Cn

(see [GKZ08, Cha15, Cha17, BKPZ16]) and on compact complex manifolds (see [DDGHKZ14,
KN18, LPT21, DKN22]).
However, there are only a few literature dealing with this problem on domains with

singularities. Recently, it was proved in [GGZ23a] that the solution u = u(Ω, φ, f) for
MA(Ω, φ, f) is continuous and unique in Ω. Further smoothness properties have been
provided in [DFS23, F23, GT23] on the regular part of domains that contain an isolated
singularity in the case of smooth boundary data.
Our main result is the following:

Theorem A. Assume that φ ∈ C0(∂Ω) and f ∈ Lp(Ω, βn) with p > 1. Then the unique
solution u ∈ PSH(Ω) ∩ C0(Ω) to MA(Ω, φ, f) has the following modulus of continuity at
x ∈ Ω:

ωu,x(t) 6 Cxmax{ωφ(t
1/2), t

1
nq+1}

for some constant Cx > 0 such that Cx → +∞ as x → 0, where ωu,x is the modulus of
continuity of u at the point x and 1

p
+ 1

q
= 1.

In particular, Theorem A implies:

Corollary B. When φ ∈ C0,α(∂Ω), 0 < α 6 1, and f ∈ Lp(Ω, βn) with p > 1, the unique
solution u ∈ PSH(Ω) ∩ C0(Ω) to MA(Ω, φ, f) is α∗-Hölder continuous outside the singular
point, for α∗ < min{α

2
, 1
nq+1

}.

Remark. This Hölder exponent1 is the same for smooth domains [Cha17, Theorem 0.2].

Remark. One can similarly treat the case when X has finitely many isolated singularities.
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Chung-Ming Pan for useful discussions and references. This work received support from the
University Research School EUR-MINT (State support managed by the National Research
Agency for Future Investments program bearing the reference ANR-18-EURE-0023).

1. Preliminaries

1.1. Complex analysis on Stein spaces. Throughout this paper, we let X be a reduced,
locally irreducible complex analytic space of pure dimension n > 1. We denote by Xreg the
complex manifold of regular points of X and Xsing := X \ Xreg the set of singular points,
which is an analytic subset of X with complex codimension > 1.
By definition, for each point x0 ∈ X , there exists a neighborhood U of x0 and a local

embedding j : U →֒ CN onto an analytic subset of CN for some N > 1. These local
embeddings allow us to define the spaces of smooth forms of given degree on X as smooth
forms on Xreg that are locally on X restrictions of an ambient form on CN . Other differential
notions and operators, such as holomorphic and plurisubharmonic functions, can also be
defined in this way. (See [Dem85] for more details). Two different notions can be defined for
plurisubharmonicity:

1Relative to the induced distance of the chosen β.
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Definition 1.1. Let u : X → R ∪ {−∞} be a given function.

(1) We say that u is plurisubharmonic (psh for short) on X if it is locally the restriction
of a plurisubharmonic function in a local embedding of X.

(2) We say that u is weakly plurisubharmonic on X if u is locally bounded from above on
X, and its restriction to the complex manifold Xreg is plurisubharmonic.

Fornæss and Narasimhan [FN80, Theorem 5.3.1] proved that u is plurisubarmonic on X if
and only if, for any analytic disc h : D → X , the function u ◦ h is subharmonic or identically
−∞. If u is weakly plurisubharmonic on X , then u is plurisubharmonic on Xreg, and thus
upper semi-continuous on Xreg. It is natural to extend u to X using the following formula:

(1.1) u∗(x) := lim sup
Xreg∋y→x

u(y), x ∈ X.

The function u∗ is upper semi-continuous, locally integrable on X , and satisfies ddcu∗ > 0
in the sense of currents on X [Dem85, Théorème 1.7]. The two notions are equivalent when
X is locally irreducible, as shown in [Dem85, Théorèm 1.10]:

Theorem 1.2. Let X be a locally irreducible analytic space and u : X → R ∪ {−∞} be a
weakly plurisubharmonic function on X. Then the function u∗ defined by (1.1) is psh on X.

Note that since u is plurisubharmonic on Xreg, we have u∗ = u on Xreg. Then u∗ is the
upper semi-continuous extension of u|Xreg

to X . With this, we have the following:

Corollary 1.3. Let U ⊂ PSH(X) be a non-empty family of plurisubharmonic functions which
is locally bounded from above on X. Then its upper envelope

U := sup{u; u ∈ U}

is a well-defined Borel function whose upper semi-continuous regularization U∗ is psh on X.

Recall that from [FN80, Theorem 6.1]X is Stein if it admits a C2 strongly plurisubharmonic
exhaustion. We will use the following definition:

Definition 1.4. A domain Ω ⋐ X is strongly pseudoconvex if it admits a negative smooth,
strongly plurisubharmonic defining function, i.e., a strongly plurisubharmonic function ρ in
a neighborhood Ω′ of Ω such that Ω := {x ∈ Ω′; ρ(x) < 0} and for any c < 0,

Ωc := {x ∈ Ω′; ρ(x) < c} ⋐ Ω

is relatively compact.

We denote by PSH(X) the set of plurisubharmonic functions on X .
On complex spaces, the complex Monge-Ampère operator has been defined and studied in

[Bed82] and [Dem85]. In this setting, if u ∈ PSH(X)∩L∞
loc(X), the Monge-Ampère measure

(ddcu)n is well defined on the regular part Xreg and can be extended to X as a Borel measure
with zero mass on Xsing. This notion extends the foundational work of pluripotential theory
by Bedford-Taylor [BT76, BT82].

Consequently, several standard properties of the complex Monge-Ampère operator acting
on PSH(X)∩L∞

loc(X) extend to this setting (see [Bed82, Dem85]). In particular, we have the
following comparison principle [Bed82, Theorem 4.3]:

Proposition 1.5 (Comparison principle). Let Ω ⋐ X be a relatively compact open set and
u, v ∈ PSH(Ω) ∩ L∞(Ω). Assume that lim infx→ζ(u(x)− v(x)) > 0 for any ζ ∈ ∂Ω. Then

ˆ

{u<v}

(ddcv)n 6

ˆ

{u<v}

(ddcu)n .

In particular, if (ddcu)n 6 (ddcv)n weakly on Ω, then v 6 u on Ω.
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1.2. Notations. We fix the following notations throughout this paper:

• X is a Stein space that is reduced and locally irreducible of complex dimension n > 1
with an isolated singularity identified as Xsing = {0} ⊂ CN .

• β is a fixed smooth positive (1,1)-form on X , the fundamental form of a Hermitian
metric on X .

• dτ is the distance induced by a fundamental form τ on some manifold (Y, τ). When
no confusion can occur dβ will be written as d(·, ·).

• Ω ⋐ X is a bounded, strongly pseudoconvex open subset of X and fix ρ smooth
strictly psh defining function, i.e., Ω = {ρ < 0}.

• 0 6 f ∈ Lp(Ω, βn), p > 1 and 1/p+ 1/q = 1 and φ ∈ C0(∂Ω).
• u(Ω, φ, f) is the solution to the Dirichlet problem:

MA(Ω, φ, f) :

{
(ddcu)n = fβn in Ω,
u = φ on ∂Ω.

• ωg,x is the modulus of continuity of some function g at the point x.
• λ(x) = d(x, 0) the distance of a point x to the singular point. The point x will be
omitted when there is no chance of confusion.

• B2n is the volume of unit ball in Cn. dV is the standard euclidian volume form in Cn.
dCn is the standard euclidian distance in Cn.

1.3. Useful Results. We need the stability estimate from [GGZ23a, Proposition 1.8]:

Theorem 1.6. Let ϕ, ψ be two bounded plurisubharmonic functions in Ω and (ddcϕ)n = fβn

in Ω. Fix 0 6 γ < 1
nq+1

. Then there exists a uniform constant C = C(γ, ||f ||Lp(Ω)) > 0 such

that:
sup
Ω
(ψ − ϕ) 6 sup

∂Ω
(ψ − ϕ)∗+ + C(||(ψ − ϕ)+||L1(Ω,βn))

γ

where (ψ−ϕ)+ := max(ψ−ϕ, 0) and w∗ is the upper semi-continuous extension of a bounded
function w on Ω to the boundary, i.e., w∗(ξ) := lim supz→ξ w(z).

The local theory [Cha17, Lemmas 3.2 and 3.3] will be used to prove Lemma 4.1. Here
reformulated to:

Theorem 1.7. Let Ω̂ ⋐ Cn strongly pseudoconvex domain, 0 6 f̂ ∈ Lp(Ω̂); p > 1 and ε > 0

small enough. For û ∈ PSH(Ω̂) ∩ C0(Ω̂) such that (ddcû)n = f̂dV in Ω̂. We have
||Λδ/2û− û||L1(Ω̂δ)

6 Cδ1−ε

for some constant C = C(n, ε, Ω̂, ||û||L∞(Ω)) > 0, where Ω̂δ := {z ∈ Ω̂|dCn(z, ∂Ω̂) > δ} and

for z ∈ Ω̂δ, Λδû(z) = 1
B2nδ2n

´

|z−ζ|6δ
û(ζ)dV (ζ) is the mean volume regularizing function in

C
n.
Moreover, if ∆û has finite mass in Ω̂ then one can get δ2 instead of δ1−ε.

We will also use, in the proof of Lemma 2.3, the following classical result from singular
Riemannian foliations in [W87, Lemma 1], here reformulated to:

Lemma 1.8. Let (M, g) be a smooth, connected, complete manifold with Riemannian metric
g and induced distance function d.Fix f ∈ C2(M) such that g(∇f,∇f) = 1. Suppose [a, b] ⊂
f(M) ⊂ R contains no critical points of f . Then for any x ∈ f−1(a) and y ∈ f−1(b) we have:

d(x, f−1(b)) = d(f−1(a), y) =

ˆ b

a

df = b− a.
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2. Construction of barriers

In this section, we develop barrier functions, which allow us to control the modulus of
continuity of solutions to Dirichlet problems close to the boundary. The barriers we will
construct are described in the following proposition:

Proposition 2.1. Let u = u(Ω, φ, f) and fix 0 6 γ < 1/(nq + 1). Then there exist two
barrier functions v, w ∈ PSH(Ω) ∩ C0(Ω), such that:

(1) v(ξ) = φ(ξ) = −w(ξ), ∀ξ ∈ ∂Ω,
(2) v(z) 6 u(z) 6 −w(z), ∀z ∈ Ω,
(3) ωv,x(t), ωw,x(t) 6 Cx max{ωφ(t

1/2), tγ},

for some constant Cx > 0 that goes to +∞ as x approaches the singular point.

The proof is divided into the following three steps:

• Step 1: We treat the case where φ ≡ 0 and f is bounded near ∂Ω.
• Step 2: Construct barriers for the case where f ≡ 0.
• Step 3: Combine Steps 1 and 2 to solve the general case.

The construction of barriers depends on the behavior around the boundary. The idea of
Step 1 comes from [GKZ08, Lemma 2.2] and Step 2 from [Cha15, Proposition 4.4].

2.1. Densities bounded near the boundary.

Lemma 2.2. Assume that f̂ is bounded near ∂Ω and set u0 := u(Ω, 0, f̂). There exist
bf̂ , w ∈ PSH(Ω) ∩ C0,1(Ω) such that:

(1) bf̂ (ξ) = 0 = −w(ξ), ∀ξ ∈ ∂Ω,

(2) bf̂ 6 u0 6 −w in Ω.

Proof. Since f̂ is bounded near ∂Ω, there exists a compact K ⊂ Ω such that 0 6 f̂ 6 M
on Ω \K. Also, there exist A1, A2 > 0 large enough such that (ddc(A1ρ))

n > Mβn > f̂βn,
on Ω \ K and A2ρ 6 m 6 u0 on a neighborhood of K, for m := min

Ω
u0. Then, by taking

the maximum of both constants, we have A > 0 large enough such that both conditions are
satisfied for bf̂ := Aρ, which is smooth plurisubharmonic on Ω. As we also have bf̂ 6 u0
on ∂(Ω \ K), by the comparison principle we get bf̂ 6 u0 in Ω \ K. By construction, we
have bf̂ 6 u0 on a neighborhood of K; hence, with the above argument we get bf̂ 6 u0 in Ω

and bf̂ (∂Ω) = {0}, thus is a lower-barrier. For an upper barrier, take w ≡ 0 in Ω as by the
maximum principle u0 6 0 and it is zero on the boundary. �

2.2. Zero density.

Lemma 2.3. Let uφ := u(Ω, φ, 0). There exists a barrier hφ ∈ PSH(Ω) ∩ C0(Ω) such that:

(1) hφ(ξ) = φ(ξ) = −h−φ(ξ), ∀ξ ∈ ∂Ω,
(2) hφ 6 uφ,6 −h−φ in Ω,
(3) ωhφ

(t) 6 Cωφ(t
1/2).

Proof. We set hφ ∈ PSH(Ω) ∩ C0(Ω) such that:{
ωhφ

(t) 6 Cωφ(t
1/2) in Ω,

hφ = φ on ∂Ω.
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With such hφ ∈ PSH(Ω) we have (ddchφ)
n > 0 = (ddcuφ)

n. Hence, by the comparison
principle, we get hφ 6 uφ. Similarly, we get −h−φ 6 −uφ; hence h−φ > uφ. Now we start the
construction of such hφ:

Step 1 : For fixed ξ ∈ ∂Ω, construct a function hξ close to ξ.

Fix ξ ∈ ∂Ω. We want to find a function hξ ∈ PSH(Ω) ∩ C0(Ω) such that:



ωhξ
(t) 6 Cωφ(t

1/2) ,
hξ(x) 6 φ(x) for any x ∈ ∂Ω,
hξ(ξ) = φ(ξ) .

In this first step, we will construct hξ above just around ξ. Take B > 0 large enough such
that: g(x) := Bρ(x)− (dβ(x, ξ))

2 is in PSH(Ω).
Consider ωφ, the minimal concave majorant of ωφ, and define χ(t) := −ωφ((−t)

1/2), which
is a convex non-decreasing function on [−d2, 0], where d = diam(Ω), the diameter of Ω.
Fix r > 0 sufficiently small such that |g(x)| 6 d2 in Br(ξ)∩Ω and define for x ∈ Br(ξ)∩Ω:

g̃(x) = χ(g(x)) + φ(ξ) = −ωφ[((dβ(x, ξ))
2 − Bρ(x))1/2] + φ(ξ). Note that g̃ is a continuous

psh function on Br(ξ) ∩ Ω.
We have ∀x ∈ ∂Ω ∩ Br(ξ), φ(ξ) − ωφ(dβ(x, ξ)) 6 φ(x). However, by our construction,

g̃(x) = φ(ξ) − ωφ(dβ(x, ξ)) for any x ∈ ∂Ω ∩ Br(ξ). Hence, g̃(x) 6 φ(x), ∀x ∈ ∂Ω ∩ Br(ξ)
and g̃(ξ) = φ(ξ). Using the subadditivity of ωφ and also the fact that ∀t, λ > 0;ωφ(λt) 6
ωφ(λt) 6 (1 + λ)ωφ(t) (see [Cha15, Lemma 4.1]) we get:

ωg̃(t) = sup
dβ(x,y)6t

|g̃(x)− g̃(y)|

6 sup
dβ(x,y)6t

ωφ[((dβ(x, ξ))
2 − (dβ(y, ξ))

2 −B(ρ(x)− ρ(y)))1/2]

6 sup
dβ(x,y)6t

ωφ[(2d+B1)
1/2(dβ(x, y))

1/2]

6 (1 + (2d+B1)
1/2) sup

dβ(x,y)6t

ωφ[(dβ(x, y))
1/2]

6 (1 + (2d+B1)
1/2) sup

dβ(x,y)6t

ωφ[(t)
1/2].

From the second line to the third, there are the following arguments: the first term goes
as d21 − d22 = (d1 − d2)(d1 + d2). Then, the first difference of distances can be bounded by
dβ(x, y) by triangular inequality. Also, the second term can be bounded by 2d. Finally, the
last term comes from the fact that, close to the boundary, we have that |ρ(x)−ρ(y)| behaves
like dβ(x, y), by Lemma 1.8 up to renormalization of the gradient close to the boundary.

Step 2 : Extending our local g̃ to all Ω as hξ.

Recall ξ ∈ ∂Ω, fix 0 < r1 < r and γ1 >
d
r1

such that ∀x ∈ Ω ∩ ∂Br1(ξ):

−γ1ωφ[((dβ(x, ξ))
2 − Bρ(x))1/2] = γ1(g̃(x)− φ(ξ)) 6 inf

∂Ω
φ− sup

∂Ω
φ.

Set γ2 = inf
∂Ω

φ. Then:

(2.1) γ1(g̃(x)− φ(ξ)) + φ(ξ) 6 γ2

for x ∈ ∂Br1(ξ) ∩ Ω. Consider:

hξ(x) :=

{
max{γ1(g̃(x)− φ(ξ)) + φ(ξ), γ2} for x ∈ Br1(ξ) ∩ Ω,
γ2 for x ∈ Ω \Br1(ξ).
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It follows from inequality (2.1) that hξ is a psh function on Ω, continuous on Ω and such
that hξ(x) 6 φ(x), ∀x ∈ ∂Ω because on ∂Ω ∩ Br1(ξ):

γ1(g̃(x)− φ(ξ)) + φ(ξ) = −γ1ωφ[dβ(x, ξ)] + φ(ξ) 6 −ωφ[dβ(x, ξ)] + φ(ξ) 6 φ(x).

Then finally, we have that hξ is a barrier relative to the point ξ, chosen generically, that
is: for each ξ ∈ ∂Ω, ∃hξ ∈ S(Ω, φ, 0); hξ(ξ) = φ(ξ) and ωhξ

(t) 6 Cωφ(t
1/2); for C = (1+(2d+

B1)
1/2) and S(Ω, φ, 0) is the set of subsolutions for the Dirichlet problem MA(Ω, φ, 0).

Step 3 : Take envelope in ξ to obtain the desired barrier hφ.

Now set hφ(x) = sup{hξ(x)|ξ ∈ ∂Ω}, which is a sup over a compact family; hence h∗φ is

a psh function. Note that 0 6 ωhφ
(t) 6 Cωφ(t

1/2); then ωhφ
(t) → 0 as t → 0. This implies

hφ ∈ C0(Ω) and hφ = h∗φ ∈ PSH(Ω). (Hence hφ ∈ S(Ω, φ, 0).) By construction, hφ = φ
on ∂Ω. Thus, we have the desired lower-barrier for MA(Ω, φ, 0) with modulus of continuity
ωφ(t

1/2). �

2.3. The general case.

Lemma 2.4. Let f̂ ∈ Lp(Ω, βn), p > 1 with f̂ is bounded near ∂Ω and 0 6 γ < 1
(nq+1)

. Then

u(Ω, φ, 0), u(Ω, 0, f̂) have modulus of continuity Cxmax{ωφ(t
1/2), tγ} and Cxt

2γ respectively,
for x ∈ Ω and some constant Cx > 0 that goes to +∞ as x→ 0.

Proof. Running the construction of this paper to the particular Dirichlet problemsMA(Ω, φ, 0)

and MA(Ω, 0, f̂), since we already have their barriers, we get from Theorem 4.3 the solution

u(Ω, φ, 0) will have modulus of continuity max{ωφ(t
1/2), tγ}. Similarly, we get that u(Ω, 0, f̂)

will have modulus of continuity t2γ , because the boundary data is zero. One gets this
regularity by applying the proof of [Cha17, Proposition 2.1] to get that ∆u(Ω, 0, f̂) is bounded
in Ω. Hence, we get the regularity t2γ out of Lemma 4.1. �

Now we prove our Proposition 2.1 for the solution of the general problem u := u(Ω, φ, f):

Proof of Proposition 2.1: The upper-barrier will be the same as in Lemma 2.3 w = u(Ω,−φ, 0).
Since −w = u(Ω, φ, 0), −w = φ in ∂Ω and 0 = (ddc(−w))n 6 (ddcu)n, by the comparison
principle we get −w > u in Ω and by the Lemma 2.4 we know the modulus of continuity of
w.

For the lower-barrier, we take a bigger pseudoconvex domain Ω ⋐ Ω̂ ⋐ X and extend

trivially by zero the density f to Ω̂, name it f̂ . Note that f̂ is bounded near ∂Ω̂. The

lower-barrier will be v := u(Ω̂, 0, f̂)|Ω + u(Ω, φ − u(Ω̂, 0, f̂)|∂Ω, 0). By construction v|∂Ω = φ
and (ddcv)n > fβn + 0 in Ω, by the comparison principle v 6 u in Ω and by Lemma 2.4 we
know the modulus of continuity of v. �

3. Regularization of the solution

This section provides an appropriate regularization scheme of the solution u = u(Ω, φ, f)
to MA(Ω, φ, f), following ideas from [GKZ08, DDGHKZ14].

3.1. Defining regularization. First, we define the set Ωδ := {x ∈ Ω | dβ(x, ∂Ω) > δ} for
0 < δ 6 δ0 where δ0 is fixed such that Ωδ0 6= ∅.
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We consider π : X̃ → X a resolution of singularities of X . We will denote objects on X̃
with a tilde. For example, Ω̃ = {π∗ρ := ρ̃ < 0}. It is known that X̃ is a Kähler manifold.

Fix a Hermitian form τ on X̃ , assuming for simplicity2 that τ and β closed.

Consider for each x̃ ∈ X̃ the exponential map expx̃ : Tx̃X̃ ∋ ξ 7→ expx̃(ξ) ∈ X̃ defined by
expx̃(ξ) = σ(1) with σ being the geodesic such that σ(0) = x̃ and initial velocity σ′(0) = ξ.
Let ũ := π∗u be the pull-back of the solution to MA(Ω, φ, f). Define its δ-regularization ηδũ
as in [Dem82] by:

ηδũ(x̃) =
1

δ2n

ˆ

ξ∈Tx̃X̃

ũ (expx̃(ξ)) η

(
|ξ|2τ
δ2

)
dVτ(ξ), δ > 0 and x̃ ∈ Ω̃δ.

Here η is a smoothing kernel, |ξ|2τ stands for
∑n

i,j=1 gij̄(x̃)ξiξ̄j, and dVτ(ξ) is the induced

measure 1
2nn!

(ddc|ξ|2τ)
n
.

It is known that:
exp : TX̃ → X̃, T X̃ ∋ (x̃, ξ) 7→ expx̃(ξ) ∈ X̃, ξ ∈ Tx̃X̃

has the following properties:

(1) exp is a C∞ mapping;

(2) ∀x̃ ∈ X̃, expx̃(0) = x̃ and Dξ exp(0) = IdTx̃X̃
.

One can formally extend ηδũ as a function on Ω̃δ × C by putting U(x̃, w) := ηδũ(x̃) for
w ∈ C with |w| = δ. Coupling the estimate of the hessian of U(x̃, w) with Kiselman’s
minimum principle, one gets [DDGHKZ14, Lemma 2.1]:

Lemma 3.1. For a bounded psh function ũ on the Kähler manifold (Ω̃ ⋐ X̃, τ). Let U(x̃, w)
be its regularization as defined above. Define the Kiselman-Legendre transform at level c by

ũc,δ(x̃) := inf
06t6δ

[
U(x̃, t) +Kt2 −Kδ2 − c log(t/δ)

]

for x̃ ∈ Ω̃δ and some positive constant K depending on the curvature of (Ω̃, τ) such that the
function U(x̃, t) +Kt2 is increasing for t ∈ (0, δ1) for some 0 < δ1 6 δ0 small enough. Also
one has the following estimate for the complex hessian:

ddcũc,δ > − (Ac+Kδ) τ

where A is a lower bound of the negative part of the bisectional curvature of (Ω̃, τ).

3.2. Correcting the positivity. Before extending to the boundary as in [GKZ08], we need
to correct the positivity of our regularizing function. The construction above creates a well
behaved regularizing function on compact subsets. However, we require plurisubharmonicity
to use the stability estimate.
As in [GGZ23b, Page 20], sinceX has an isolated singularity, we get the following argument:

The exceptional divisor E of the resolution has the property that there exist positive rational
numbers (bi)i∈I such that −

∑
i∈I biEi is π-ample, where each Ei is an irreducible component

of E. Then, on each OX̃(Ei) pick a section si cutting out Ei and choose an appropriate
smooth Hermitian metric hi such that

ρ′ := B1(π
∗(B0ρ) +

∑

i∈I

bi log |si|
2
hi
)

is strictly psh in X̃ for some B0 > 1 big enough and choose B1 > 0 such that ddcρ′ > τ .
Assume without loss of generality ũ > 0. Now we fix:

2By [DDGHKZ14, Page 624] and [LPT21, Page 2036], taking β and τ not closed will change the exponencial
map but not the estimates.
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(3.1) ũδ := ũc,δ; Ac := H(δ)−Kδ

for H : R+ → R+ continuous, increasing function such that ωH(δ) & ωv(δ) & O(δ) and
H(0) = 0, for v one of the barriers in Proposition 2.1 and A,K from Lemma 3.1. Take
δ < δ2 6 δ1 for δ2 small enough such that the c above is positive. We have control on its loss
of positivity, hence:

ûδ := ũδ + (Ac+Kδ)ρ′ = ũδ +H(δ)ρ′.

We have ddcûδ = ddcũδ + (Ac +Kδ)ddcρ′. By the definition of ρ′ and Lemma 3.1 we get

ûδ ∈ PSH(Ω̃δ). Now, push down ûδ to X .
We define ǔδ := π∗ûδ, which will be a singular psh function on Ωδ.

3.3. Extending regularization to all Ω. Here, we will use the Hölder barriers constructed
in Section 2 to control u δ−close to the boundary. The extension will be, for some constant
C > 0:

uδ =

{
max{ǔδ, u+ 4CH(δ)} in Ω2δ,
u+ 4CH(δ) in Ω \ Ω2δ.

Notice that because ǔδ goes to −∞ at 0, then close to the singularity (inside some ball
Bµ(0), for µ > 0 small enough) u + 4CH(δ) will eventually be the greater term inside the
max above, making uδ continuous and psh in Ω. For the gluing to be in PSH(Ω) we need
that ǔδ(x) 6 u(x)+4CH(δ), ∀x ∈ ∂Ω2δ. The barriers will give us this last inequality through
the following arguments:

3.3.1. Behaviour at the boundary. Fix some λ0 > 0 small enough such that Bλ0
(0) ⋐ Ωδ0 .

Lemma 3.2. The solution u = u(Ω, φ, f) satisfies, for some constant C ′ > 0:

|u(x)− u(ξ)| 6 C ′ωv(d(x, ξ)), ∀x ∈ Ω \Bλ0
(0); ∀ξ ∈ ∂Ω.

Proof. From Proposition 2.1:

v(x)− v(ξ) 6 u(x)− φ(ξ) 6 −(w(x)− w(ξ)), ∀x ∈ Ω \Bλ0
(0); ∀ξ ∈ ∂Ω.

By the modulus of continuity of the barriers we get, for some constant C ′ > 0:

|u(x)− u(ξ)| 6 C ′ωv(d(x, ξ)), ∀x ∈ Ω \Bλ0
(0); ∀ξ ∈ ∂Ω.

�

3.3.2. Behaviour near the boundary.

Lemma 3.3. Take r0 > r > 0 where Br0(ξ) ∩ Ω ⊂ Ω \ Bλ0
(0); ∀ξ ∈ ∂Ω. For any ξ ∈ ∂Ω,

Then the solution u satisfies the following property:

|u(x1)− u(x2)| 6 2C ′ωv(r)

for some constant C ′ > 0 and ∀x1, x2 ∈ Br(ξ) ∩ Ω.

Proof. Fix r > 0 and an arbitrary ξ ∈ ∂Ω. Take any two points x1, x2 ∈ Br(ξ) ∩ Ω. Using
the triangular inequality we get:

|u(x1)− u(x2)| 6 |u(x1)− u(ξ)|+ |u(ξ)− u(x2)|

6 Cωv(d(x1, ξ)) + Cωv(d(ξ, x2))

6 2Cωv(r).

The second line comes from Lemma 3.2. �
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3.3.3. Extension of regularization. By construction, the value of uδ := π∗ũδ is under control
relative to the supremum on a ball of radius δ for the points away from the singularity, where
the resolution is an isomorphism. To prove the inequality necessary for the glueing process,
we use an argument by contradiction:

Proof. Assume by contradiction that ∃x0 ∈ ∂Ω2δ such that ǔδ(x0) > u(x0) + 4CH(δ). since

uδ(x0) 6 max
Bδ(x0)

u, then ∃ x∗ ∈ Bδ(x0) such that u(x∗)+H(δ)π∗ρ
′(x0) > u(x0)+4CH(δ). The

points on ∂Ω2δ have distance 2δ to ∂Ω, then take ξ0 ∈ ∂Ω such that d(ξ0, x0) = 2δ. We use
the Lemma 3.3 for r = 4δ, x1 = x0 and x2 = x∗, for δ < min{r0/2, δ2}. Then:

|u(x0)− u(x∗)| 6 2C ′ωv(4δ).

By assumption |u(x∗) − u(x0)| > 4CH(δ) − H(δ)π∗ρ
′(x0) > 8C ′H(δ). For C > 2C ′ +

inf
∂Ωδ

π∗ρ
′ + sup

Ω
π∗ρ

′ > 0. Then we get: 2C ′(ωv(4δ)− 4H(δ)) > 0, which is a contradiction for

any ωv(δ) & δ, as ωH(δ) & ωv(δ). �

Hence, the global extension uδ is continuous and psh as we wanted to construct.

4. L1 Estimate

We will use the local theory developed in [GKZ08], and then refined in [BKPZ16, Cha17],
to obtain the L1 estimate of the regularizing function using a Laplacian estimate.

4.1. L1 Laplacian estimate. Here, we calculate the estimate that dictates the behavior
away from the boundary, derived from the local theory using a Laplacian estimate. First, we
compare the local regularizing function with the one constructed in Section 3:

Lemma 4.1. For ε > 0 small enough and u ∈ PSH(Ω) ∩ C0(Ω) with (ddcu)n = fβn in Ω.

Then for any sufficiently small δ > 0 and chart on the resolution (U ⋐ Ω̃δ/2, ψ) we have:

ηδ/2ũ 6 C1Λδ/2ũ+ C2δ
2

for some constants C1, C2 > 0 and Λδũ(x̃) := Λδ(ũ ◦ ψ
−1)(ψ(x̃)) for any x̃ ∈ U .

Moreover, we have ||ηδũ − ũ||L1(Ω̃2δ)
6 C̃δ1−ε, for some constant C̃ > 0. Also, if ∆ũ has

finite mass in Ω̃ then one can get δ2 instead of δ1−ε.

Proof. For a fixed chart (U ⋐ Ω̃δ/2, ψ) we have from the proof of [DDGHKZ14, Lemma 2.3]:

ηδ/2ũ(x̃) =
1

(δ/2)2n

ˆ

ỹ∈X̃

ũ(ỹ)η

(
| logx̃ ỹ|

(δ/2)2

)
dVτ(logx̃ ỹ)

where ỹ 7→ ξ = logx̃ ỹ is the inverse function of ξ 7→ ỹ = expx̃(ξ). By the proof of
[DDGHKZ14, Lemma 2.4] we have:

dVτ (logx̃ ỹ) =

n∧

j=1

i

2
(dzj − dwj) ∧ (dz̄j − dw̄j) +O(dτ(ỹ, x̃)

2),

where (w, z) 7→ (x̃, logx̃ ỹ)) represent local coordinates on a neighborhood of the zero section
in TU , while (x̃, logx̃ ỹ)) 7→ (x̃, ỹ) is a diffeomorphism from that neighborhood onto the
diagonal in U × U . The O(·) term depends only on the curvature. By definition, coupled
with the above equality:

ηδ/2ũ(ỹ)− Λδ/2ũ(ỹ) 6 C1Λδ/2ũ(ỹ) + C2δ
2,

for any ỹ ∈ U and some constants C1, C2 > 0. Moreover, taking sup η = 1 one can choose
C1 = 0, consequently applying Theorem 1.7, one gets:
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||ηδ/2ũ− ũ||L1(U) 6 C3δ
1−ε,

for some constant C3 > 0 for the chart (U, ψ). Then, by compactness of Ω̃δ, the desired

estimate is achieved for some constant C̃ > 0:

||ηδũ− ũ||L1(Ω̃2δ)
6 C̃δ1−ε.

�

Remark 4.2. The proof doesn’t involve the boundary values of u. This is clear by the proof
of [Cha17, Lemmas 3.2 and 3.3].

4.2. Main estimate. Theorem 4.3 bellow gives us our main estimate Theorem A and also
Corollary B:

Theorem 4.3. The unique solution u = u(Ω, φ, f) ∈ PSH(Ω) ∩ C0(Ω) to MA(Ω, φ, f),
satisfies for any x ∈ Ω:

ωu,x(t) 6 CxωH(t)

for some constants Cx > 0 such that Cx → +∞ as x → 0, 0 6 γ < 1
(nq+1)

and ωH(t) &

max{ωφ(t
1/2), tγ}.

Proof. Fix γ < 1
(nq+1)

and ε > 0 sufficiently small that γ′ := γ
(1−ε)

< 1
(nq+1)

. Applying

Theorem 1.6 for γ′:

sup
x∈Ω

(uδ(x)− u(x)− 4CH(δ)) 6 sup
x∈∂Ω

(uδ(x)− u(x)− 4CH(δ))∗ + C||uδ − u− 4CH(δ)||γ
′

L1(Ω)

6C||uδ − u− 4CH(δ)||γ
′

L1(Ω2δ\Bµ(0))

6C||ǔδ − u− 4CH(δ)||γ
′

L1(Ω2δ\Bµ(0))

6C||π∗ũδ − u||γ
′

L1(Ω2δ\Bµ(0))

6C||π∗ηδũ− u||γ
′

L1(Ω2δ\Bµ(0))

6C||ηδũ− ũ||γ
′

L1(Ω̃2δ\π−1[Bµ(0)])

6C(C̃γ′

δ(1−ε)γ′

)

6C0δ
γ

Close to ∂Ω and 0 the terms are controlled by construction. From lines 3 to 4, we use
the fact that H(δ)ρ′ − 4CH(δ) 6 0. Remember that outside the singularity/divisors π is an
isomorphism. The second to last passage is achieved by applying Lemma 4.1. Hence, we get:

C0δ
γ + 4CH(δ) >sup

x∈Ω
(uδ(x)− u(x))

>uδ(x)− u(x), ∀x ∈ Ω

>π∗ũδ(x)− u(x) +H(δ)π∗ρ
′(x), ∀x ∈ Ωδ

>ũδ(x̃)− ũ(x̃) +H(δ)M log(dτ (x̃, E)), ∀x̃ ∈ Ω̃δ

As ρ′(x̃) > M log(dτ (x̃, E)), for any x̃ ∈ Ω̃ and some constant M > 0. Then, for S(λ̃) :=
M(− log(dτ (x̃, E))):

3

3The notation λ̃(x̃) in X̃ is the analogous of λ(x) in X .
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(4.1) ũδ(x̃)− ũ(x̃) 6 (C1 + S(λ̃))H(δ), ∀x̃ ∈ Ω̃δ

Following the proof of [DDGHKZ14, Theorem D], we get a uniform lower bound on the
parameter t = t(x̃) that realizes the infimum in the Kiselman-Legendre transform for ũδ at

a fixed x̃ ∈ Ω̃δ:

ũδ(x̃)− ũ(x̃) = ηtũ(x̃) +Kt2 − ũ(x̃)−Kδ2 − c log(t/δ) 6 (C1 + S(λ̃))H(δ)

As t 7→ ηtũ+Kt2 is increasing, we have ηtũ+Kt2 − ũ > 0; thus:

c log(t/δ) > −(C2 + S(λ̃))H(δ).

Since c = A−1H(δ) − A−1Kδ = H(δ)(A−1 − A−1K δ
H(δ)

), we get the bound c >
A−1H(δ)

2
,

by choosing δ 6 δ3 := min{r0/2, δ0, δ1, δ2, ̟
−1(1/2K)} for ̟(δ) = δ

H(δ)
, because ωH(δ) & δ.

Then:

δ > t(x̃) > δκ(x̃),

where

(4.2) κ(x̃) := e−2A(C2+S(λ̃)) = e−2AC′

2 · (λ̃(x̃))2AM

Finally, using that t 7→ ηtũ +Kt2 is increasing, t(x̃) > δκ(x̃) and the inequality (4.1), for

every x̃ ∈ Ω̃δ we get:

(4.3) ηδκ(x̃)ũ(x̃)− ũ(x̃)−Kδ2 6 ũδ(x̃)− ũ(x̃) 6 (C1 + S(λ̃))H(δ)

which leaves us with:

(4.4) ηδũ(x̃)− ũ(x̃) 6 (C3 + S(λ̃))H(δ/κ(λ̃)) 6 Cλ̃ωH(δ), ∀x̃ ∈ Ω̃δ

by the subadditivity of ωH we get: Cλ̃ = (C3+S(λ̃))

κ(λ̃)
= [C3+M ′(− log(λ̃(x̃)))]

(λ̃(x̃))2AM
.

Fix x̃ ∈ Ω̃ \ E, then there exists δ′ 6 min{1/2, δ3, λ(x)/2, d(x, ∂Ω)/2}. Now fix any

0 < δ < δ′, hence x̃ ∈ Ω̃δ. Applying [Ze20, Theorem 3.4] for Ω̃δ, ũ and inequality (4.4):

(4.5) |ũ(x̃)− ũ(ỹ)| 6 D0(Cλ̃(x̃) + Cλ̃(ỹ))ωH(dτ (x̃, ỹ)),

for any ỹ ∈ Ω̃δ and some constant D0 > 0. Then, one can pass the right-hand side of (4.5) to

Ωδ and substitute λ̃ by λ, by choosing τ := C̃π∗β + εθ for some constants C̃ > 1 big enough
and 0 < ε small enough, with some smooth closed (1,1)-form θ so that π∗d 6 dτ . Hence:

(4.6) |u(x)− u(y)| 6 (Cλ(x) + Cλ(y))ωH(dτ (x̃, ỹ)),

for any ỹ ∈ Ω̃δ and some constant Cλ > 0 that goes to +∞ as λ→ 0. Lastly, notice that we
have the comparison τx̃ 6 Kλ(x)π

∗βx̃ for some constant Kλ > 0 that goes to +∞ as λ → 0.
Now, by the subadditivity of ωH we get:

(4.7) |u(x)− u(y)| 6 (C ′
λ(x))ωH(d(x, y)) 6 (C ′

λ(x))ωH(δ)

for any y ∈ Bδ(x) and some constant C ′
λ > 0 that goes to +∞ as λ → 0. By choosing

ωH(t) = max{ωφ(t
1/2), tγ} one proves Theorem A, Corollary B follows as ωφ(t) = tα. �

Remark 4.4. One can notice that the proof of [Ze20, Theorem 3.4] follows even if Ω̃δ have

a boundary because ũ is defined on all Ω̃.
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